E-Paper ESP8266 Driver Board-使用准备

使用准备

硬件操作、环境搭建和程序说明等

下载例程

我们有提供本地、WiFi两种例程,本页面的“资料”标签内可以找到示例程序,或者点击 示例程序 下载
将下载下来的压缩包解压出来,可以得到以下文件:

examples:本地例程
Loader:WiFi例程

环境配置

  • 如果您电脑之前没有安装 Arduino IDE,或者 IDE 的版本比较老。建议到 Arduino 官方网站根据自己的系统下载最新的 IDE 并安装。
    官方链接:https://www.arduino.cc/en/Main/Software
  • 下载 Arduino-ESP8266 支持包:打开 IDE,文件 - 首选项。在设置界面将 http://arduino.esp8266.com/stable/package_esp8266com_index.json 添加到附加开发板管理器网址框中。然后点击“好”完成设置。(GitHub国内访问比较慢,推荐利用搜索引擎完成该步骤)

  • 打开工具->开放板管理器。找到ESP8266by ESP8266 Community选项并安装。安装完成后,就可以在工具->开发板里面找到ESP8266的相关选项了

  • 等待安装完成后,可以在 IDE 的 Tools - Boards 里面找到 NodeMCU 1.0的型号选项即可
  • 设置型号开关,根据使用的墨水屏型号设置型号开关

Trigger stateE-Paper
A1.54 inch, 2.13 inch, 2.9 inch
B1.54 inch(b), 2.13 inch(b), 2.7 inch, 2.7 inch(b), 2.9 inch(b), 4.2 inch, 4.2 inch (b), 7.5 inch(b), 7.5 inch(b)

图像处理

在蓝牙和WiFi例程中,提供了两种图像处理算法,分别是 Level(色阶法)以及 Dithering(抖动法)

色阶法

一张图像,我们可以把它划分为几个大的颜色域,图像上的每个像素点根据颜色跟这几个色域的趋近程度,被划分到这些颜色域中去。这种方法比较适用于颜色不多的图像,例如亮色或者三色的形状或者文字图像。以黑白红三色墨水屏为例,处理图像的时候我们希望把它处理成黑白红三色,因此对于一张图像来说,我们可以把图像的所有颜色划分三个大的颜色区域:黑色区域,白色区域,红色区域。
比如根据下图,如果灰度图中的某个像素点的值等于或者小于127的话,我们把这个像素点视为黑色像素,否则,就是白色

对于彩色图来说,我们都知道RGB有三色通道,相对于红色通道来说,我们可以把蓝色和绿色统称为蓝-绿通道,或者是非红通道。根据下面的图,彩色图像上的某个像素点,如果它红色通道的值很高,但是蓝-绿通道的值很低的话,我们将它归为红色像素;如果说它红色通道和蓝-绿通道的值都很低的话,我们将它归为黑色像素;红色和蓝-绿通道值都很高的话我们把它归为白色。

算法中,对于颜色定义是根据RGB值以及预期颜色值的平方和的差值计算的。其中预期颜色值是指的像素点最趋近的那个颜色值,这些值被保存在 curPal 数组中。

抖动法

对于那些颜色比较多,或者渐变区域比较多的图像,上面的色阶法并不太合适,很多时候图像里面的渐变区域的像素可能跟所有颜色域都很接近,如果用色阶法的画就会让图像丢失很多图像细节。很多摄像头拍摄的图片,通过混合颜色的方法来绘画阴影和过度区域,这些图像中,渐变区域占了大部分
对于人眼来说,很容易把特别小的颜色混淆了,比如两种颜色红和蓝并列,如果把它缩小到足够小的手,在人眼看来会变成一种由红和蓝混合而成的颜色。人眼的缺陷意味着我们可以通过欺骗人眼,利用“混合”的方法来获取更多可以表现的颜色,抖动算法就是采用了这一种现象。
我们提供的例程中使用了Floyd-Steinberg 抖动算法-基于错误扩散 (由Robert Floy 和Louis Steinberg在1976年发表)。公式是根据下面的图像的方式进行错误扩散

X 就是错误 (原始颜色和灰度值(颜色值)之间的一个标量(矢量)差值),这个错误会向右边,右下, 下边,和左下四个方向扩散, 分别以7/16, 1/16, 5/16和3/16的权重添加到这四个像素点的值中去。感兴趣的用户可以去了解该算法,网络上有很多资源。

两种算法的处理效果比较

原图

“黑白色阶处理”和“多色色阶处理”
 
“黑白抖动处理”和“多色抖动处理”