NanoPC-T6教程

1 Introduction

The NanoPC-T6 (as “T6”) is an open-sourced mini IoT gateway device with two 2.5G and one Gbps Ethernet ports, designed and developed by FriendlyElec.It is integrated with a Rockchip RK3588 CPU, 4GB/8GB/16GB LPDDR4x RAM and 32GB/64GB/256GB eMMC flash. It supports booting with TF cards and works with operating systems such as FriendlyWrt etc.

The NanoPC-T6 has rich hardware resources with a compact PCB size of 110*80mm. FriendlyElec has released a carefully-designed custom CNC housing for it. It has two HDMI-Out port and one HDMI-In port. It works with Android, Debian Desktop and Ubuntu etc and works with headless systems as well. It supports decoding 8K60 H.265/VP9 formatted videos.

The NanoPC-T6 has one USB3.0 port and one USB C port.

All in all, the NanoPC-T6 is a board featured with multiple Ethernet ports, light NAS and video playing. It is a cannot-miss platform with infinite possibilities for geeks, fans and developers.

2 Hardware Spec

  • SoC: Rockchip RK3588
    • CPU: Quad-core ARM Cortex-A76(up to 2.4GHz) and quad-core Cortex-A55 CPU (up to 1.8GHz)
    • GPU: Mali-G610 MP4, compatible with OpenGLES 1.1, 2.0, and 3.2, OpenCL up to 2.2 and Vulkan1.2
    • VPU: 8K@60fps H.265 and VP9 decoder, 8K@30fps H.264 decoder, 4K@60fps AV1 decoder, 8K@30fps H.264 and H.265 encoder
    • NPU: 6TOPs, supports INT4/INT8/INT16/FP16
  • RAM: 64-bit 4GB/8GB/16GB LPDDR4X at 2133MHz
  • Flash: 32GB/64GB/256GB eMMC, at HS400 mode
  • microSD: support up to SDR104 mode
  • Ethernet: 2x PCIe 2.5G Ethernet
  • 4G LTE: one mimiPCIe connector and one microSIM slot
  • USB-A: 1x USB 3.0 Type-A
  • USB-C: 1x Full function USB Type‑C™ port, support DP display up to 4Kp60, USB 3.0
  • Video input:
    • 1x Standard HDMI input port, up to 4Kp60
    • 2x 4-lane MIPI-CSI, compatible with MIPI V1.2
  • Video output:
    • 2x Standard HDMI output ports
      • compatible with HDMI2.1, HDMI2.0, and HDMI1.4 operation
      • one support displays up to 7680x4320@60Hz, another one support up to 4Kp60
      • Support RGB/YUV(up to 10bit) format
    • 2x 4-lane MIPI-DSI, compatible with MIPI DPHY 2.0 or CPHY 1.1
  • Audio:
    • 3.5mm jack for stereo headphone output
    • 2.0mm PH-2A connector for analog microphone input
  • GPIO:
    • 40-pin 2.54mm header connector
    • up to 2x SPIs, 6x UARTs, 1x I2Cs, 8x PWMs, 2x I2Ss, 28x GPIOs
  • M.2 Connectors
    • one M.2 M-Key connector with PCIe 3.0 x4 for NVMe SSDs up to 2,500 MB/s
    • one M.2 E-key connector with PCIe 2.1 x1 and USB2.0 Host
  • others:
    • 2 Pin 1.27/1.25mm RTC battery input connector for low power RTC IC HYM8563TS
    • one 38Khz IR receiver
    • MASK button for eMMC update, reset button, and Power button
    • one 5V Fan connector
    • Debug UART, 3-Pin 2.54mm header, 3.3V level, 1500000bps
    • 2 x GPIO Controlled LED (SYS, LED1)
  • Power supply: 5.5*2.1mm DC Jack, 12VDC input.
  • PCB: 8 Layer, 110x80x1.6mm
  • Ambient Operating Temperature: 0℃ to 70℃

3 Diagram, Layout and Dimension


3.1 Layout

  • 40-pin GPIO
Pin#GPIOSPIUARTI2CI2SPWMPOWERDescription
1,17VCC3V3_SYS_S33.3V Power Output, 500mA Max
2,4VCC_5V05V Power Output, 500mA Max
6,9,14,20,25,30,34,39GNDPower and Signal Ground
3GPIO1_D7I2C8_SDA_M2pulled up to 3.3V with 2.2K on T6
5GPIO1_D6I2C8_SCL_M2pulled up to 3.3V with 2.2K on T6
7GPIO3_B2I2S2_SDI_M13.3V
8GPIO0_C5UART0_TX_M0PWM4_M03.3V
10GPIO0_C4UART0_RX_M03.3V
11GPIO3_C2PWM14_M03.3V
12GPIO3_B73.3V
13GPIO3_C3PWM15_IR_M03.3V
15GPIO1_A73.3V
16GPIO3_B3I2S2_SDO_M13.3V
18GPIO3_B4I2S2_MCLK_M13.3V
19GPIO1_B2SPI0_MOSI_M2UART4_RX_M23.3V
21GPIO1_B1SPI0_MISO_M23.3V
22GPIO1_B5SPI0_CS1_M0UART7_TX_M23.3V
23GPIO1_B3SPI0_CLK_M2UART4_TX_M23.3V
24GPIO1_B4SPI0_CS0_M2UART7_RX_M23.3V
26GPIO1_B03.3V
27GPIO1_A0UART6_RX_M13.3V
28GPIO1_A1UART6_TX_M13.3V
29GPIO3_B5UART3_TX_M1I2S2_SCLK_M1PWM12_M03.3V
31GPIO3_B6UART3_RX_M1I2S2_LRCK_M1PWM13_M03.3V
32GPIO0_C6PWM5_M13.3V
33GPIO3_B0PWM9_M03.3V
35GPIO3_A0SPI4_MISO_M1I2S3_MCLKPWM10_M03.3V
36GPIO3_A3SPI4_CS0_M1UART8_RX_M1I2S3_SDO3.3V
37GPIO3_A4SPI4_CS1_M1I2S3_SDI3.3V
38GPIO3_A1SPI4_MOSI_M1I2S3_SCLK3.3V
40GPIO3_A2SPI4_CLK_M1UART8_TX_M1I2S3_LRCK3.3V
  • MIPI-DSI
0.5mm FPC Connector
Pin#MIPI-DSI0MIPI-DSI1Description
1,2,3VCC_5V0VCC_5V05V Power ouput
4,7,9,11,15,18,21,24,27,30GNDGNDPower and Signal Ground
5I2C5_SDA_M0I2C4_SDA_M33.3V, I2C Data, pulled up to 3.3V with 2.2K on T6
6I2C5_SCL_M0I2C4_SCL_M33.3V, I2C Clock, pulled up to 3.3V with 2.2K on T6
8GPIO3_C0GPIO4_A03.3V, GPIO
10GPIO3_B1/PWM2_M1GPIO3_D5/PWM11_M33.3V, GPIO/PWM
12GPIO3_A6GPIO4_A33.3V, GPIO
13/NC/NCNo Connection
14GPIO3_C1GPIO4_A13.3V, GPIO
16MIPI_DPHY0_TX_D3NMIPI_DPHY1_TX_D3NMIPI TX Lane3 ouput N
17MIPI_DPHY0_TX_D3PMIPI_DPHY1_TX_D3PMIPI TX Lane3 ouput P
19MIPI_DPHY0_TX_D2NMIPI_DPHY1_TX_D2NMIPI TX Lane2 ouput N
20MIPI_DPHY0_TX_D2PMIPI_DPHY1_TX_D2PMIPI TX Lane2 ouput P
22MIPI_DPHY0_TX_D1NMIPI_DPHY1_TX_D1NMIPI TX Lane1 ouput N
23MIPI_DPHY0_TX_D1PMIPI_DPHY1_TX_D1PMIPI TX Lane1 ouput P
25MIPI_DPHY0_TX_D0NMIPI_DPHY1_TX_D0NMIPI TX Lane0 ouput N
26MIPI_DPHY0_TX_D0PMIPI_DPHY1_TX_D0PMIPI TX Lane0 ouput P
28MIPI_DPHY0_TX_CLKNMIPI_DPHY1_TX_CLKNMIPI TX Clock ouput N
29MIPI_DPHY0_TX_CLKPMIPI_DPHY1_TX_CLKPMIPI TX Clock ouput P
  • MIPI-CSI
0.5mm FPC Connector
Pin#MIPI-CSI0MIPI-CSI1Description
1,2VCC_5V0VCC_5V05V Power ouput
3,13,15,18,21,24,27,30GNDGNDPower and Signal Ground
4,5,7/NC/NCNo Connection
6VCC_1V8_S3VCC_1V8_S31.8V Power ouput, 100mA Max
8VSYNC_MASTERVSYNC_SLAVEHave been Connected together on T6 for sensor synchronization
9I2C3_SCL_M0I2C7_SCL_M01.8V, I2C Clock, pulled up to 1.8V with 2.2K on T6
10I2C3_SDA_M0I2C7_SDA_M01.8V, I2C Data, pulled up to 1.8V with 2.2K on T6
11GPIO4_C4GPIO2_C11.8V, GPIO
12GPIO4_C5GPIO2_C21.8V, GPIO
14MIPI_CAM1_CLKOUTMIPI_CAM2_CLKOUT1.8V, CLock ouput for Sensor
16MIPI_CSI0_RX_D3PMIPI_CSI1_RX_D3PMIPI RX Lane3 iuput P
17MIPI_CSI0_RX_D3NMIPI_CSI1_RX_D3NMIPI RX Lane3 iuput N
19MIPI_CSI0_RX_D2PMIPI_CSI1_RX_D2PMIPI RX Lane2 iuput P
20MIPI_CSI0_RX_D2PMIPI_CSI1_RX_D2NMIPI RX Lane2 iuput N
22MIPI_CSI0_RX_D1PMIPI_CSI1_RX_D1PMIPI RX Lane1 iuput P
23MIPI_CSI0_RX_D1NMIPI_CSI1_RX_D1NMIPI RX Lane1 iuput N
25MIPI_CSI0_RX_CLK0PMIPI_CSI1_RX_CLK0PMIPI RX Clock iuput P
26MIPI_CSI0_RX_CLK0NMIPI_CSI1_RX_CLK0NMIPI RX Clock iuput N
28MIPI_CSI0_RX_D0PMIPI_CSI1_RX_D0PMIPI RX Lane0 iuput P
29MIPI_CSI0_RX_D0NMIPI_CSI1_RX_D0NMIPI RX Lane0 iuput N
  • Debug UART Pin Spec
3.3V level signals, 1500000bps
Pin#AssignmentDescription
1GND0V
2UART2_TX_M0_DEBUGoutput
3UART2_RX_M0_DEBUGintput
  • About Power
    • Power supply via 5.5*2.1mm DC Jack. 5V~20V, 12V is recommended.
    • Power Output Capacity
PortMax OutputPortMax Output
USB-A 3.05V/2AUSB-C/DP5V/2A
M.2 M-Key3.3V/3AM.2 E-Key3.3V/3A
MIPI-CSI05V/0.5AMIPI-CSI15V/0.5A
MIPI-DSI05V/1AMIPI-DSI15V/1A
GPIO5V/0.5A, 3.3V/0.5AminiPCIe3.3V/3A
Total35W
  • RTC
RTC backup current is 0.25μA TYP (VDD =3.0V, TA =25℃).
Connector P/N: Molex 53398-0271


  • IR receiver
Connected to PWM3_IR_M0
38Khz carrier frequency
compatible with NEC protocol, User code is 3B4C
Support FriendlyELEC RC100 IR controller

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPC-T6 get the following items ready

4.2 TF Cards We Tested

Refer to:

SanDisk 32GB TF(MicroSD)

SanDisk 32GB TF(MicroSD)

SanDisk TF 8G Class10 microSD

SanDisk TF 128G Class10 microSDXC TF 128G 48MB/S

4.3 Configure parameters for serial port

Use the following serial parameters:

Baud rate1500000
Data bit8
Parity checkNone
Stop bit1
Flow controlNone

4.4 Install OS

4.4.1 Flash to TF

Visit download link to download image files (in the "01_Official images/01_SD card images" directory) and utilities (in the "05_Tools" directory):

Image Files
rk3588-sd-friendlywrt-21.02-YYYYMMDD.img.gzFriendlyWrt lite image file, based on OpenWrt 21.02, kernel version 5.10.y
rk3588-sd-friendlywrt-21.02-docker-YYYYMMDD.img.gzFriendlyWrt with Docker image file, based on OpenWrt 21.02, kernel version 5.10.y
rk3588-sd-friendlywrt-22.03-YYYYMMDD.img.gzFriendlyWrt lite image file, based on OpenWrt 22.03, kernel version 5.10.y
rk3588-sd-friendlywrt-22.03-docker-YYYYMMDD.img.gzFriendlyWrt with Docker image file, based on OpenWrt 22.03, kernel version 5.10.y
rk3588-sd-androidtv-YYYYMMDD.img.zipAndroid 12 TV
rk3588-sd-android12-YYYYMMDD.img.zipAndroid 12 Tablet
rk3588-sd-debian-bullseye-core-5.10-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Core, no desktop environment, command line only, kernel version 5.10.y
rk3588-sd-debian-bullseye-minimal-5.10-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Desktop, Uses LXDE as default desktop, no pre-installed recommended software, supports hardware acceleration, kernel version 5.10.y
rk3588-sd-debian-bullseye-desktop-5.10-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Desktop, Uses LXDE as default desktop, pre-installed mpv, smplayer and chromium brower, supports hardware acceleration, kernel version 5.10.y
rk3588-sd-ubuntu-jammy-desktop-arm64-YYYYMMDD.img.gzUbuntu 22.04 with GNOME and Wayland, pre-installed web browser and other recommended software, kernel version 5.10.y
rk3588-sd-ubuntu-jammy-minimal-arm64-YYYYMMDD.img.gzLightweight Ubuntu 22.04 with GNOME and Wayland, recommended software is not included, kernel version 5.10.y
rk3588-sd-friendlycore-focal-5.10-arm64-YYYYMMDD.img.gz64-bit FriendlyCore Lite image file based on Ubuntu core 20.04 64bit, kernel version 5.10.y
Other Image
Github Actions

FriendlyWrt

Flash Utility:
win32diskimager.rarWindows utility. Under Linux users can use "dd"

The detailed steps are as follows:

  • Get an 8G SDHC card and backup its data if necessary;
  • Download and extract the xxx.img.gz and win32diskimager;
  • Run the win32diskimager utility under Windows as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on "write" to start flashing the SD card. Under Linux run "dd" to flash the rkXXXX-sd-OSNAME-YYYYMMDD.img file to your SD card;
  • Take out the SD and insert it to NanoPC-T6's microSD card slot;
  • Power on NanoPC-T6 and it will be booted from your TF card;

4.4.2 Install OS to eMMC

4.4.2.1 Option 1: Install OS on Web Page

Get a TF card which has been installed with FriendlyWrt, log in FriendlyWrt on the web page, click on “System” ->”eMMC Tools”. Click on “Select file” to select your wanted image file, either an official image (the name might start with “rk3588-sd”) or a third party image. The file should be a “.gz” or “.img” file.
After a file is selected, click on “Upload and Write” to start installing an OS.

After installation is done, eject the SD card, the system will automatically reboot and load the OS from eMMC. After the OS begins to load, if the system LED is flashing and the network LED is on, it means the the OS has loaded successfully. If the OS is FriendlyWrt, you can click on “Go to Homepage” to enter the homepage.
Note that if you are burning the FriendlyElec firmware, you need to use an image file with the "-sd-" file name, similar to the one below:

rk3588-sd-friendlywrt-21.02-YYYYMMDD.img.gz
rk3588-sd-friendlywrt-21.02-docker-YYYYMMDD.img.gz
rk3588-sd-friendlywrt-22.03-YYYYMMDD.img.gz
rk3588-sd-friendlywrt-22.03-docker-YYYYMMDD.img.gz

If the file is in 7z, zip or rar format, you will need to extract it first. If the file is too large to write, you can compress it into .gz format and try again.

4.4.2.2 Option 2: Install OS via TF Card
4.4.2.2.1 Install OS to eMMC
  • This method firstly boots a mini Linux from a TF card and then automatically runs an EFlasher utility to install the OS to eMMC.
  • You can connect your system to an HDMI monitor and watch its progress. This is optional. You can watch its progress by observing its LEDs as well.

Visit download link to download the needed utilities and image file:

Image File
rk3588-eflasher-friendlywrt-21.02-YYYYMMDD.img.gzFriendlyWrt
Based on OpenWrt 21.02
Kernel version 5.10.y
rk3588-eflasher-friendlywrt-21.02-docker-YYYYMMDD.img.gzFriendlyWrt
Pre-installed Docker
Based on OpenWrt 21.02
Kernel version 5.10.y
rk3588-eflasher-friendlywrt-22.03-YYYYMMDD.img.gzFriendlyWrt
Based on OpenWrt 22.03
Kernel version 5.10.y
rk3588-eflasher-friendlywrt-22.03-docker-YYYYMMDD.img.gzFriendlyWrt
Pre-installed Docker
Based on OpenWrt 22.03
Kernel version 5.10.y
rk3588-eflasher-debian-bullseye-core-5.10-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Core
No desktop environment, command line only
Kernel version 5.10.y
rk3588-eflasher-debian-bullseye-minimal-5.10-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Desktop
Uses LXDE as default desktop
No pre-installed recommended software
Supports hardware acceleration
Kernel version 5.10.y
rk3588-eflasher-debian-bullseye-desktop-5.10-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Desktop
Uses LXDE as default desktop
Pre-installed mpv, smplayer and chromium brower
Supports hardware acceleration
Kernel version 5.10.y
rk3588-eflasher-androidtv-YYYYMMDD.img.zipAndroid TV
rk3588-eflasher-android12-YYYYMMDD.img.zipAndroid 12 (Tablet)
rk3588-eflasher-ubuntu-jammy-desktop-arm64-YYYYMMDD.img.gzUbuntu 22.04 with GNOME and Wayland
Pre-installed web browser and other recommended software
kernel version 5.10.y
rk3588-eflasher-ubuntu-jammy-minimal-arm64-YYYYMMDD.img.gzLightweight Ubuntu 22.04 with GNOME and Wayland
Recommended software is not included
kernel version 5.10.y
rk3588-eflasher-friendlycore-focal-5.10-arm64-YYYYMMDD.img.gz64-bit FriendlyCore Lite image file based on Ubuntu core 20.04 64bit, kernel version 5.10.y
Flash Utility:
win32diskimager.rarWindows utility. Under Linux users can use "dd"

Here are the steps:

  • Get an SDHC card with a minimum capacity of 8G
  • Download a rk3588-eflasher-OSNAME-YYYYMMDD.img.gz image file and a win32diskimager;
  • Under Windows, run win32diskimager as administrator, select your SD card and extracted EFlasher image file, and click on “Write” to write image file on the SD card; or under Linux, you use the dd command to write the rk3588-eflasher-OSNAME-YYYYMMDD.img file to the SD card.
  • Eject your SD card and insert it to NanoPC-T6’s microSD card slot.
  • Turn on NanoPC-T6, it will boot from the SD card and automatically run EFlasher to install the OS to the board’s eMMC. You connect your board to an HDMI monitor or observer the board’s LEDs to watch its installation progress

Progress

SYS LED(Red)

Power On

Solid On

System Boot

Slow Flashing

Installation in Progress

Fast Flashing

Installation Done

Slow Flashing

  • After installation is done, power off the board, eject the SD card from NanoPC-T6, power on the board again, NanoPC-T6 will load the OS from its eMMC
4.4.2.2.2 Install Flash Image File to eMMC
  • Auto Install (Default Behavior)

1) Download an “eflasher” firmware from network drive, extract it and install it to a TF card ;
2) Eject and insert the TF card to your PC, after a “FriendlyARM” device shows up(Under Linux, it is a “FriendlyARM” directory), copy an .img or .gz file to the TF card.
3) Open the eflasher.conf file on the TF card, set “autoStart=” to the name of your image file, such as:

autoStart=openwrt-rockchip-armv8_nanopi-ext4-sysupgrade.img.gz

Anyone of the files that contain “-sd-” will work. Here is a list:

rk3588-sd-friendlywrt-22.03-YYYYMMDD.img.gz
rk3588-sd-friendlywrt-22.03-docker-YYYYMMDD.img.gz
rk3588-sd-friendlywrt-21.02-YYYYMMDD.img.gz
rk3588-sd-friendlywrt-21.02-docker-YYYYMMDD.img.gz
rk3588-sd-ubuntu-jammy-desktop-5.10-arm64-20221029.img.gz

4) Eject the TF card, insert the TF card to NanoPC-T6, power it on it will automatically install your firmware. You can watch the installation progress by observing the LEDs’ status.

  • Disable Auto Installation

If you want to disable auto installation, please open the eflasher.conf file, set “autoStart=” to empty:

autoStart=

In this case, after the system boots, it will stay at the step where you are expected to select an image file. You need to connect an HDMI monitor and a USB mouse to your board and install a firmware on its UI;

4.4.2.3 Option 3: Install OS via USB
4.4.2.3.1 Step 1: Install USB Driver and Tools/Utilities

Download a driver file DriverAssitant_v5.1.1.zip under the “tools” directory from network drive, extract and install it.
Under the same directory, download a utility RKDevTool_Release_v2.84.zip and extract it.

4.4.2.3.2 Step 2: Connect NanoPC-T6 to PC and Enter Installation Mode

1) Disconnect the connected USB cable and the power cord from NanoPC-T6, eject the TF card;
2) Press and hold the “Mask” key, power on the board. After the status LED has been on for at least 3 seconds, release the Mask key.
3) Use a USB C-to-A cable, connect NanoPC-T6 to a PC.

4.4.2.3.3 Step 3: Install image to eMMC

A firmware in general is packaged in either of the two options: the first is an whole image (ie, update.img) which is often offered by third party developers, the second is that an image is packaged and placed in multiple partition images. FriendlyElec offers an image in the latter option.

  • Option 1: Install whole image (ie, update.img)

On a PC which has the extracted RKDevTool_Release_v2.84 utility, go to the RKDevTool_Release_v2.84 directory, run the RKDevTool.exe file. If everything works, you will see a “Found a new Maskrom device” message on the utility;
Go to “Upgrade Firmware(升级固件)”, click on “Firmware(固件)”, select your wanted image file, and click on “Upgrade(升级)” to install. After installation is done, your board will reboot automatically and load the system from eMMC;

  • Option 2: Install OS that is packaged & placed in multiple partition images

Go to network drive to download your needed package and extract it.

Image File
rk3588-usb-friendlywrt-21.02-YYYYMMDD.img.gzFriendlyWrt
Based on OpenWrt 21.02
Kernel version 5.10.y
rk3588-usb-friendlywrt-21.02-docker-YYYYMMDD.img.gzFriendlyWrt
Pre-installed Docker
Based on OpenWrt 21.02
Kernel version 5.10.y
rk3588-usb-friendlywrt-22.03-YYYYMMDD.img.gzFriendlyWrt
Based on OpenWrt 22.03
Kernel version 5.10.y
rk3588-usb-friendlywrt-22.03-docker-YYYYMMDD.img.gzFriendlyWrt
Pre-installed Docker
Based on OpenWrt 22.03
Kernel version 5.10.y
rk3588-usb-debian-bullseye-core-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Core
No desktop environment, command line only
Kernel version 5.10.y
rk3588-usb-debian-bullseye-minimal-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Desktop
Uses LXDE as default desktop
No pre-installed recommended software
Supports hardware acceleration
Kernel version 5.10.y
rk3588-usb-debian-bullseye-desktop-arm64-YYYYMMDD.img.gzDebian 11(Bullseye) Desktop
Uses LXDE as default desktop
Pre-installed mpv, smplayer and chromium brower
Supports hardware acceleration
Kernel version 5.10.y
rk3588-usb-androidtv-YYYYMMDD.img.zipAndroid TV
rk3588-usb-android12-YYYYMMDD.img.zipAndroid 12 (Tablet)
rk3588-usb-ubuntu-jammy-desktop-arm64-YYYYMMDD.img.gzUbuntu 22.04 with GNOME and Wayland
Pre-installed web browser and other recommended software
kernel version 5.10.y
rk3588-usb-ubuntu-jammy-minimal-arm64-YYYYMMDD.img.gzLightweight Ubuntu 22.04 with GNOME and Wayland
Recommended software is not included
kernel version 5.10.y
rk3588-usb-friendlycore-focal-5.10-arm64-YYYYMMDD.img.gz64-bit FriendlyCore Lite image file based on Ubuntu core 20.04 64bit, kernel version 5.10.y

After it is extracted, you will see some utilities and a configuration file under the directory. double click on RKDevTool.exe, you will see a “Found a new Maskrom device” message on the utility. Click on the “Execute”, wait a moment and it will be installed. After installation is done your system will automatically reboot and load the system from eMMC.

4.5 The Boot order between eMMC and SD card

By default, the system will be booted from the TF card first, but this is not the case under all conditions. This section will explain all situations in detail;

Refer to rockchip official document (1), there are two types of loader program:
1) U-Boot TPL/SPL (i.e. upsream U-Boot, also called mainline U-Boot)
2) Rockchip MiniLoader

Things to note:
1) FriendlyELEC's image uses Rockchip MiniLoader
2) The third-party image usually uses U-Boot TPL/SPL

The following situations will always start from eMMC:
If the system in the eMMC, or the system in the TF card uses the first Loader type U-Boot TPL/SPL, it will always boot from the eMMC;
If you want to boot from the TF card, there are the following methods:
Method 1: Clear the Loader on the eMMC, the clearing method is as follows, after starting from the eMMC, enter the following command on the command line to clear the Loader on the eMMC:

dd if=/dev/zero of=/dev/mmcblk2 bs=8M count=1

Method 2: Insert the TF card, Press Maskrom Key (or short-circuit the Maskrom contacts) and then power on (need to keep the short-circuit for about 3 seconds), it will start from the TF card

The summary is as follows:

eMMC current systemTF card current systemBoot priority
No systemAny imageTF card
FriendlyELEC's imageFriendlyELEC's imageTF card
FriendlyELEC's imageImage with Mainline U-booteMMC
Image with Mainline U-bootFriendlyELEC's imageeMMC
Image with Mainline U-bootImage with Mainline U-booteMMC

5 Work with FriendlyWrt

5.1 Introduction to FriendlyWrt

FriendlyWrt is a customized system made by FriendlyElec based on an OpenWrt distribution. It is open source and well suitable for developing IoT applications, NAS applications etc.

5.2 First boot

For the first boot, the system needs to do the following initialization work:
1)Extended root file system
2)Initial setup(will execute /root/setup.sh)
So you need to wait for a while (about 2~3 minutes) to boot up for the first time, and then set FriendlyWrt, you can enter the ttyd terminal on the openwrt webpage, when the prompt is displayed as root@FriendlyWrt, it means the system has been initialized.

root@FriendlyWrt

5.3 Account & Password

The default password is password (empty password in some versions). Please set or change a safer password for web login and ssh login. It is recommended to complete this setting before connecting NanoPC-T6 to the Internet.

5.4 Login FriendlyWrt

Connect the PC to the LAN port of NanoPC-T6. If your PC without a built-in ethernet port, connect the LAN port of the wireless AP to the LAN port of NanoPC-T6, and then connect your PC to the wireless AP via WiFi , Enter the following URL on your PC's browser to access the admin page:

The above is the LAN port address of NanoPC-T6. The IP address of the WAN port will be dynamically obtained from your main router through DHCP.

5.5 Recommended security settings

The following settings are highly recommended to complete before connecting NanoPC-T6 to the Internet。

  • Set a secure password
  • Only allow access to ssh from lan, change the port
  • Only allow local devices to access luci

Edit /etc/config/uhttpd,Change the original 0.0.0.0 and [::] addresses to the local lan address, for example:

	# HTTP listen addresses, multiple allowed
	list listen_http	192.168.2.1:80
	list listen_http	[fd00:ab:cd::1]:80
 
	# HTTPS listen addresses, multiple allowed
	list listen_https	192.168.2.1:443
	list listen_https	[fd00:ab:cd::1]:443

Restart the service:

/etc/init.d/uhttpd restart
  • Check the firewall settings

Set up as you wish.

5.6 Change LAN IP in LuCI

1) Click on Network → Interfaces, then click on the Edit button of the LAN Network;
2) In General Setup tab, input new IP address (for example: 192.168.11.1), click "Save" and then click "Save & Apply";
3) On the pop-up window with the title “Connectivity change“, click "Apply and revert on connectivity loss";
4) Wait a moment, enter the new address in your computer's browser and login to FriendlyWrt;

5.7 Safe shutdown operation

Enter the "Services" -> "Terminal", enter the "poweroff" command and hit enter, wait until the led light is off, and then unplug the power supply.

5.8 Soft Factory Reset

Enter "System"->"Backup/Flash firmware",Click “Perform reset“ Button, Your device's settings will be reset to defaults like when FriendlyWrt was first installed.
You can also do this in the terminal:

firstboot && reboot

5.9 Install Software Packages

5.9.1 Set up openwrt official opkg source

sed -i -e 's/mirrors.cloud.tencent.com/downloads.openwrt.org/g' /etc/opkg/distfeeds.conf
opkg update

5.9.2 Update Package List

Before install software packages update the package list:

$ opkg update

5.9.3 List Available Packages

$ opkg list

5.9.4 List Installed Packages

$ opkg list-installed

5.9.5 Install Packages

$ opkg install <package names>

5.9.6 Remove Packages

$ opkg remove <package names>

5.10 Disable IPv6

. /root/setup.sh
disable_ipv6
reboot

5.11 Configure the function of the user button

By default, the user button is configured to reboot the device, as shown below:

echo 'BTN_1 1 /sbin/reboot' >> /etc/triggerhappy/triggers.d/example.conf

You can change its behavior by changing the configuration file above.

5.12 Configuring Quectel EC20 (4G module) dial-up networking

  • Go to "Network" -> "Interfaces"
  • Click "Delete" next to "WAN6", then click "Save & Apply"
  • Click "Edit" next to "WAN", in the "Device" drop-down menu, select "Ethernet Adapter: wwan0", in the "Protocol" drop-down menu, select "QMI Cellular" and click "Switch Protocol"
  • Click the "Modem Device" drop-down menu, select "/dev/cdc-wdm0", fill in the APN information (e.g. for China Mobile, enter "cmnet")
  • Click "Save" to close the dialog, Finally, click "Save & Apply" at the bottom of the page to initiate the dial-up process
  • Devices connected to LAN will have access to the Internet, If your device has a WiFi module, you can enable wireless AP functionality on the "Wireless" page and connect to the Internet via devices connected wirelessly

5.13 Some common issues of FriendlyWrt

  • Unable to dial up
    • Go to "Network" -> "Firewall" and set "Inbound Data", "Outbound Data" and "Forwarding" in "WAN Zone" to "Accept";
    • If you still cannot access the Internet, you can try to turn off IPV6;
  • Dial-up successful, but no outgoing traffic
    • Go to "Services" -> "Terminal" and type "fw4 reload" to try to reload the firewall settings again;
  • Unable to power on
    • Try to replace the power adapter and cable. It is recommended to use a power supply with specifications above 5V/2A;
    • Note that some fast chargers with Type-C interface will have a delay, it may take a few seconds to start providing power;
  • When doing secondary routing, the computer cannot connect to the Internet
    • If your main network is IPv4, and NanoPC-T6 works in IPv6, the computer may not be able to connect to the Internet. It is recommended to turn off IPv6 (the method is described later in this WiKi), or switch the main route to IPv6;
  • If you have questions or have better suggestions, please send an email to techsupport@friendlyarm.com;

5.14 Use USB2LCD to view IP and temperature

Plug the USB2LCD module to the USB interface ofNanoPC-T6 and power on, the IP address and CPU temperature will be displayed on the LCD:


5.15 How to use USB WiFi

5.15.1 Check USB WiFi Device with Command Line Utility

(1) Click on "services>ttyd" to start the command line utility

(2) Make sure no USB devices are connected to your board and run the following command to check if any USB devices are connected or not

lsusb

(3) Connect a USB WiFi device to the board and run the command again

lsusb

You will see a new device is detected. In our test the device's ID was 0BDA:C811

(4) Type your device's ID (in our case it was "0BDA:C811" or "VID_0BDA&PID_C811") in a search engine and you may find a device that matches the ID. In our case the device we got was Realtek 8811CU.

5.15.2 Configure a USB WiFi Device as AP

(1) Connect a USB WiFi device to the NanoPC-T6. We recommend you to use the following devices:

Note: devices that match these VID&PIDs would most likely work.
(2) Click on "System>Reboot" and reboot your NanoPC-T6

(3) Click on "Network>Wireless" to enter the WiFi configuration page

(4) Click on "Edit" to edit the configuration

(5) On the "Interface Configuration" page you can set the WiFi mode and SSID, and then go to "Wireless Security" to change the password. By default the password is "password". After you make your changes click on "Save" to save

(6) After you change the settings you can use a smartphone or PC to search for WiFi

5.15.3 Common USB WiFi issues

1) It is recommended to plug in the usb wifi in the off state, then power it on, FriendlyWrt will automatically generate the configuration file /etc/config/wireless, if not, see if there is wlan0 by ifconfig -a, if there is no wlan0, usually there is no driver.
2) If ifconfig -a sees wlan0, but the hotspot is not working properly, try changing the channel and country code, an inappropriate country code can also cause the WiFi to not work.
3) Some USB WiFis (e.g. MTK MT7662) work in CD-ROM mode by default and need to be switched by usb_modeswitch, you can try to add usb_modeswitch configuration to the following directory: /etc/usb_modeswitch.d.

5.15.4 Change the default WiFi hotspot configuration

FriendlyWrt sets the country, hotspot name and other parameters for USB WiFi by default, with the aim of being as plug-and-play as possible, but this does not guarantee that all modules will be compatible with this setting, you can change these behaviors by modifying the following file:

/lib/wifi/mac80211.sh

5.16 Work with Docker Applications

5.16.1 Work with Docker: Install JellyFin

mkdir -p /jellyfin/config
mkdir -p /jellyfin/videos
docker run --restart=always -d -p 8096:8096 -v /jellyfin/config:/config -v /jellyfin/videos:/videos jellyfin/jellyfin:10.1.0-arm64 -name myjellyfin

After installation, visit port 8096 and here is what you would find:

5.16.2 Work with Docker: Install Personal Nextcloud

mkdir /nextcloud -p
docker run -d -p 8888:80  --name nextcloud  -v /nextcloud/:/var/www/html/ --restart=always --privileged=true  arm64v8/nextcloud

After installtion, visit port 8888.

5.16.3 Expand Docker Storage

  • Stop docker service first:
/etc/init.d/dockerd stop
  • Rename the original /opt directory, create an empty /opt directory:
mv /opt /opt-old && mkdir /opt
  • Format your drive as ext4, and mount it to the /opt directory:


  • Enter the command "mount | grep /opt" to check the mount status:
root@FriendlyWrt:~# mount | grep /opt
/dev/nvme0n1p1 on /opt type ext4 (rw,relatime)
root@FriendlyWrt:~#
  • Copy the files from the original /opt directory to the new /opt directory:
cp -af /opt-old/* /opt/ && rm -rf /opt-old
  • Reboot the device
reboot
  • After reboot, go to the "Docker" -> "Overview" page, check the information in the "Docker Root Dir" line, you can see that the Docker space has been expanded:


5.16.4 Docker FAQ and solutions

5.16.4.1 Unable to access the network services provided by the Docker container

Solution:

  • Go to the "Firewall" settings and set "Forwarding" to "Accept";
  • Turn off "Software Offload";

5.17 Mount smbfs

mount -t cifs //192.168.1.10/shared /movie -o username=xxx,password=yyy,file_mode=0644

5.18 Use sdk to compile the package

5.18.1 Install the compilation environment

Download and run the following script on 64-bit Ubuntu (version 18.04+): How to setup the Compiling Environment on Ubuntu bionic

5.18.2 Download and decompress sdk from the network disk

The sdk is located in the toolchain directory of the network disk:

tar xvf openwrt-sdk-*-rockchip-armv8_gcc-11.2.0_musl.Linux-x86_64.tar.xz
# If the path is too long, it will cause some package compilation errors, so change the directory name here
mv openwrt-sdk-*-rockchip-armv8_gcc-11.2.0_musl.Linux-x86_64 sdk
cd sdk
./scripts/feeds update -a
./scripts/feeds install -a

5.18.3 Compile the package

download the source code of the example (a total of 3 examples are example1, example2, example3), and copy to the package directory:

git clone https://github.com/mwarning/openwrt-examples.git
cp -rf openwrt-examples/example* package/
rm -rf openwrt-examples/

Then enter the configuration menu through the following command:

make menuconfig

In the menu, select the following packages we want to compile (actually selected by default):

"Utilities" => "example1"
"Utilities" => "example3"
"Network" => "VPN" => "example2"

execute the following commands to compile the three software packages:

make package/example1/compile V=99
make package/example2/compile V=99
make package/example3/compile V=99

After the compilation is successful, you can find the ipk file in the bin directory, as shown below:

$ find ./bin -name example*.ipk
./bin/packages/aarch64_generic/base/example3_1.0.0-220420.38257_aarch64_generic.ipk
./bin/packages/aarch64_generic/base/example1_1.0.0-220420.38257_aarch64_generic.ipk
./bin/packages/aarch64_generic/base/example2_1.0.0-220420.38257_aarch64_generic.ipk

5.18.4 Install the ipk to NanoPi

You can use the scp command to upload the ipk file to NanoPi:

cd ./bin/packages/aarch64_generic/base/
scp example*.ipk root@192.168.2.1:/root/

Then use the opkg command to install them:

cd /root/
opkg install example3_1.0.0-220420.38257_aarch64_generic.ipk
opkg install example1_1.0.0-220420.38257_aarch64_generic.ipk
opkg install example2_1.0.0-220420.38257_aarch64_generic.ipk

5.19 Build FriendlyWrt using GitHub Actions

Please refre this link: https://github.com/friendlyarm/Actions-FriendlyWrt

6 Work with Ubuntu 22.04 Desktop

6.1 Introduction to Ubuntu 22.04 Desktop

Ubuntu 22.04 Desktop has the following features:

  • Uses GNOME 42 as default desktop;
  • Uses Wayland as default display server;
  • Mali GPU-based OpenGL ES support;
  • Support Rockhip MPP video hard coding and hard decoding;
  • Pre-installed mpv and kodi, support video hardware decoding;
  • Compatible with Docker and Plex server;


6.2 Account & Password

Regular Account:
    User Name: pi
    Password: pi

Root:
    the root user account is disabled by default, you may configure the root password through the 'sudo passwd root' command.

6.3 View IP address

Since the hostname is FriendlyElec.lan by default, you can use the ping command to get the IP address:

ping FriendlyElec.lan

6.4 Connect to Ubuntu via SSH

ssh pi@FriendlyElec.lan

The default password is: pi

6.5 Update Software Packages

$ sudo apt-get update

6.6 Install Ubuntu software center

$ sudo apt-get install snapd
$ sudo snap install snap-store

6.7 Install the kernel-header package

sudo dpkg -i /opt/linux-headers-*.deb

try to compile a kernel module:

sudo apt update
sudo apt install git gcc make bc
git clone https://github.com/RinCat/RTL88x2BU-Linux-Driver.git
cd RTL88x2BU-Linux-Driver
make -j$(nproc)
sudo make install
sudo modprobe 88x2bu

6.8 Change time zone

6.8.1 Check the current time zone

timedatectl

6.8.2 List all available time zones

timedatectl list-timezones

6.8.3 Set the time zone (e.g. Shanghai)

sudo timedatectl set-timezone Asia/Shanghai

6.9 Change startup LOGO and Wallpaper

Replace the following two files in the kernel source code directory and recompile the kernel:
kernel/logo.bmp
kernel/logo_kernel.bmp
Or use the script to operate, as shown below:

  • Download scripts:
git clone https://github.com/friendlyarm/sd-fuse_rk3588.git -b master
cd sd-fuse_rk3588
  • Compile kernel and repackage firmware
convert files/logo.jpg -type truecolor /tmp/logo.bmp
convert files/logo.jpg -type truecolor /tmp/logo_kernel.bmp
LOGO=/tmp/logo.bmp KERNEL_LOGO=/tmp/logo_kernel.bmp ./build-kernel.sh ubuntu-jammy-desktop-arm64
./mk-emmc-image.sh ubuntu-jammy-desktop-arm64

6.10 Soft Factory Reset

Execute the following command in a terminal:

sudo firstboot && sudo reboot

6.11 Start the program automatically at startup(For example Firefox)

Put the desktop file in the ~/.config/autostart/ directory, for example:

mkdir ~/.config/autostart/
cp /usr/share/applications/firefox.desktop ~/.config/autostart/

6.12 Disable auto-mounting

sudo systemctl mask udisks2
sudo reboot

6.13 Setup Chinese language and Input method

6.13.1 Setup Chinese language

Enter the following command and select 'zh_CN.UTF-8':

sudo dpkg-reconfigure locales

Add environment variables to .bashrc:

echo "export LC_ALL=zh_CN.UTF-8" >> ~/.bashrc
echo "export LANG=zh_CN.UTF-8" >> ~/.bashrc
echo "export LANGUAGE=zh_CN.UTF-8" >> ~/.bashrc

Reboot device:

sudo reboot

6.14 Video playback with hardware decoding

6.14.1 GUI

  • Locate the video file in the file browser, right click and select "Play with mpv media player"
  • Using Kodi player
  • Using Chromium web browser, you can play videos on the web with hardware decoding (limited to the video formats supported by the CPU)

6.14.2 Command line

  • Play local video file
export DISPLAY=:0.0
mpv --fs /home/pi/Videos/demo.mp4
  • Play web-video
export DISPLAY=:0.0
mpv --fs https://www.youtube.com/watch?v=lK-nYDmC1Dk

6.15 How to Install Plex Media Server

Run the following command to install:

echo deb https://downloads.plex.tv/repo/deb public main | sudo tee /etc/apt/sources.list.d/plexmediaserver.list
curl https://downloads.plex.tv/plex-keys/PlexSign.key | sudo apt-key add -
sudo apt update
sudo apt install plexmediaserver

After successful installation, enable Plex (starts automatically at system startup):

sudo systemctl enable plexmediaserver
sudo systemctl start plexmediaserver
sudo systemctl status plexmediaserver

After installation, login to Plex server by entering the following address in your computer browser: http://IPAddress:32400/web/

6.16 Install Docker Engine

6.16.1 Install Docker Engine

sudo apt install apt-transport-https ca-certificates curl software-properties-common gnupg lsb-release
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt update
sudo apt install docker-ce docker-ce-cli containerd.io docker-compose-plugin

Let’s verify:

sudo docker info

6.16.2 Run Docker as a non-root user

sudo groupadd docker
sudo gpasswd -a ${USER} docker
sudo systemctl restart docker
sudo chmod a+rw /var/run/docker.sock

Let’s verify:

docker images

6.16.3 Testing Docker: Installing Nextcloud with docker

mkdir ~/nextcloud -p
docker run -d -p 8888:80  --name nextcloud  -v ~/nextcloud/:/var/www/html/ --restart=always --privileged=true  arm64v8/nextcloud

After installation, visit: http://Device-IP-Address:8888 on your computer browser to view the nextcloud web page.

6.17 WiFi Connection

6.17.1 Gui

Click on the icon on the top right in the FriendlyDesktop's main window, select your wanted WiFi hotspot and proceed with prompts

6.17.2 Console

Please visit: Use NetworkManager to configure network settings

6.18 Test OpenGL ES

First, change the CPU governor to performance:

sudo sh -c 'echo performance > /sys/devices/system/cpu/cpufreq/policy0/scaling_governor'
sudo sh -c 'echo performance > /sys/devices/system/cpu/cpufreq/policy4/scaling_governor'
sudo sh -c 'echo performance > /sys/devices/system/cpu/cpufreq/policy6/scaling_governor'

Start glmark2-es2-wayland:

glmark2-es2-wayland

6.19 Chromium web browser

6.19.1 GPU

Chromium web browser has enabled hardware acceleration by default, supports WebGL, and can view hardware acceleration details by entering the URL chrome://gpu, as shown below:

6.19.2 VPU

Play a video in the browser, then use fuser on the command line to view the mpp device node to confirm that the vpu interface is being called:

pi@FriendlyElec:~$ fuser /dev/mpp_service
/dev/mpp_service:     3258

If there is no content output from the fuser command, it means software decoding.

7 Work with Android

Android include the following features:

  • There are two versions, TV and Tablet;
  • Support infrared remote control (only for models with Ir Receiver);
  • Support Bluetooth remote control (requires USB or M.2 Bluetooth module);
  • Support wired network;
  • Support WiFi (requires external USB or M.2 WIFI module);
  • Support video hard decoding;


7.1 WiFi models supported by Android

7.1.1 M.2 WiFi Module

  • RTL8822CE
7.1.1.1 Usb Dongle
  • RTL8821CU (Vid: 0BDA, Pid: C811) (Test sample:TP-Link TL-WDN5200H)
  • RTL8812AU (Vid: 0BDA, Pid: 8812)
  • MediaTek MT7662 (Vid: 0E8D, Pid: 7612) (Test sample:COMFAST CF-WU782AC V2)

7.2 Bluetooch models supported by Android

7.2.1 Bluetooth Adapters

  • RTL8761B (Test sample:UGREEN CM390 Bluetooth 5.0 USB Adapter)
  • CSR8510 A10 Bluetooth Dongle 0a12:0001

7.2.2 Bluetooth Remote

  • Amazon Fire TV Remote

7.3 How to use ADB

7.3.1 USB connection

Please note: After turning on the ADB, the USB3 port will work in Device mode, if you need to connect a device such as a USB stick, you need to turn off the ADB and restart the board
In general, ADB is disabled by default, please follow the steps below to enable it:

  • Connect your development board to your computer using a USB A-to-A data cable, referring to the figure below, be sure to connect it to the USB port closest to the edge:

7.3.2 For Android Tablet

  • Go to Settings -> About tablet -> tap the "Build number" at the bottom of the screen 7 times in a row;
  • Go to Settings -> System -> Advance -> Developer options, and check the box for USB debugging;
  • Reboot

7.3.3 For Android TV

  • Click the Settings icon -> Device Preferences -> About -> tap the "Android TV OS build" at the bottom of the screen 7 times in a row;
  • Click the Settings icon -> Device Preferences -> Developer options, and check the box for USB debugging;
  • Reboot

7.3.4 Using ADB

  • Install ADB drivers and commands based on your operating system;
  • Normally, the Android status bar will prompt "USB debugging connected", indicating that ADB has been enabled. Enter the following command on your computer to check the connection:
$ adb devices
List of devices attached
27f7a63caa3faf16	device
  • Enter adb shell:
$ adb shell
nanopi3:/ $

7.4 Expanding the Storage Partition

If Android is installed on an SD card, after burning the image to the SD card, do not insert it into the target board and start it up. Instead, execute the following commands on a Linux computer to expand the partition first:

echo "write" | sfdisk /dev/sdX -q --force
parted -s /dev/sdX unit % resizepart 14 100 print

Please replace /dev/sdX with the actual device name of your SD card, and 14 with the sequence number of the last partition on your SD card.

If Android is installed on eMMC, you can start a Linux system (such as Ubuntu or Debian) from an SD card and perform the same operation on the eMMC device via the command line. The device name for eMMC is usually /dev/mmcblk2.

If the Android system has already been booted and you need to restore the factory settings after expanding the partition, for example, if the system is an Android tablet, the option to restore factory settings can be found here:
Settings -> System -> Reset options -> Erase all data(factory reset)

Using EFlasher to burn the Android image to eMMC will automatically expand the file system.

7.5 Wired networks on Android

  • Any network port can connect to the network via DHCP
  • If you want to configure a static IP, only eth0 interface is supported
  • Some applications may have compatibility issues and report no network connection error, but the network is actually connected

8 Work with Debian11 Desktop

8.1 Introduction to Debian11 Desktop

Debian11 Desktop is a light-weighted debian desktop system,it has the following features:

  • Uses LXDE as default desktop;
  • Mali GPU-based OpenGL support;
  • Support Rockhip MPP video hard coding and hard decoding;
  • Pre-installed mpv and smplayer, both support 4K video hardware decoding;
  • Pre-installed Chromium browser, support vpu/gpu hardware acceleration (video hard decoding limited to h264/mp4 format);
  • Compatible with Plex Server and Docker;


8.2 Account & Password

Regular Account:
    User Name: pi
    Password: pi

Root:
    the root user account is disabled by default, you may configure the root password through the 'sudo passwd root' command.

8.3 View IP address

Since the Debian Bullseye hostname is the hardware model by default, you can use the ping command to get the IP address:ping NanoPC-T6

8.4 Connect to Debian via SSH

Run the following commandssh pi@NanoPC-T6
The default password is: pi

8.5 Update Software Packages

$ sudo apt-get update

8.6 Install x11vnc Server on Debian for Remote Access

8.6.1 Install x11vnc server

The following command to install x11vnc server:

sudo apt-get install x11vnc

8.6.2 Set your password

sudo x11vnc -storepasswd /etc/x11vnc.pwd

8.6.3 Setup x11vnc server with systemd auto start up

Create service configuration file:

sudo vi /lib/systemd/system/x11vnc.service

Let’s copy and paste the following configuration into our newly create service file:

[Unit]
Description=Start x11vnc at startup.
Requires=display-manager.service
After=syslog.target network-online.target
Wants=syslog.target network-online.target
 
[Service]
Type=simple
ExecStart=/usr/bin/x11vnc -display :0 -forever -loop -noxdamage -repeat -rfbauth /etc/x11vnc.pwd -rfbport 5900 -shared -capslock -nomodtweak
ExecStop=/usr/bin/x11vnc -R stop
Restart=on-failure
 
[Install]
WantedBy=multi-user.target

The following commands to reload the systmd system and to enable and start the x11vnc service:

sudo systemctl daemon-reload
sudo systemctl enable x11vnc.service
sudo systemctl start x11vnc

8.6.4 Testing remote access

Start the VNC client software, input IP:5900 to connect:

8.7 Install the kernel-header package

sudo dpkg -i /opt/linux-headers-*.deb

try to compile a kernel module:

sudo apt update
sudo apt install git gcc make bc
git clone https://github.com/RinCat/RTL88x2BU-Linux-Driver.git
cd RTL88x2BU-Linux-Driver
make -j$(nproc)
sudo make install
sudo modprobe 88x2bu

8.8 Change time zone

8.8.1 Check the current time zone

timedatectl

8.8.2 List all available time zones

timedatectl list-timezones

8.8.3 Set the time zone (e.g. Shanghai)

sudo timedatectl set-timezone Asia/Shanghai

8.9 Change startup LOGO and Wallpaper

8.9.1 Change startup LOGO

Replace the following two files in the kernel source code directory and recompile the kernel:
kernel/logo.bmp
kernel/logo_kernel.bmp
Or use the script to operate, as shown below:

  • Download scripts:
git clone https://github.com/friendlyarm/sd-fuse_rk3588.git -b master --single-branch
cd sd-fuse_rk3588
  • Compile kernel and repackage firmware
convert files/logo.jpg -type truecolor /tmp/logo.bmp
convert files/logo.jpg -type truecolor /tmp/logo_kernel.bmp
sudo LOGO=/tmp/logo.bmp KERNEL_LOGO=/tmp/logo_kernel.bmp ./build-kernel.sh debian-bullseye-desktop-arm64
sudo ./mk-sd-image.sh debian-bullseye-desktop-arm64
sudo ./mk-emmc-image.sh debian-bullseye-desktop-arm64

Note: If your system is not debian-bullseye-desktop-arm64, please specify according to the actual situation

8.9.2 Change Wallpaper

Modify the following configuration file:

/home/pi/.config/pcmanfm/LXDE/desktop-items-0.conf

8.10 Soft Factory Reset

Execute the following command in a terminal:

sudo firstboot && sudo reboot

8.11 Start the program automatically at startup(For example Kodi)

Put the desktop file in the ~/.config/autostart/ directory, for example:

mkdir ~/.config/autostart/
cp /usr/share/applications/kodi.desktop ~/.config/autostart/

8.12 Disable auto-mounting

sudo systemctl mask udisks2
sudo reboot

8.13 Setup Chinese language and Input method

8.13.1 Setup Chinese language

Enter the following command and select 'zh_CN.UTF-8':

sudo dpkg-reconfigure locales

Add environment variables to .bashrc:

echo "export LC_ALL=zh_CN.UTF-8" >> ~/.bashrc
echo "export LANG=zh_CN.UTF-8" >> ~/.bashrc
echo "export LANGUAGE=zh_CN.UTF-8" >> ~/.bashrc

Reboot device:

sudo reboot

8.13.2 Installing Chinese input method

Enter the following command to install fcitx and Pinyin input method:

sudo apt update
sudo apt-get install fcitx fcitx-pinyin
sudo apt-get install im-config
sudo apt-get install fcitx-table*
sudo apt-get install fcitx-ui-classic fcitx-ui-light
sudo apt-get install fcitx-frontend-gtk2 fcitx-frontend-gtk3 fcitx-frontend-qt4
sudo apt-get remove --purge scim* ibus*
sudo reboot

After reboot, press Ctrl+Space to switch between Chinese and English input methods, and the input method icon will appear in the upper right corner, right-click the input method icon in the upper right corner to switch input methods in the pop-up menu, as shown below:

8.14 Installing Plex Multimedia Server

Visit the Plex website: https://www.plex.tv/media-server-downloads/
On the download page, select the category "Plex Media Server", choose "Linux" for the platform and "Ubuntu(16.04+)/Debian(8+) - ARMv8" for the version,
After downloading the deb package, use the dpkg command to install the package:

sudo dpkg -i plexmediaserver_1.31.0.6654-02189b09f_arm64.deb

After installation, login to the Plex server by typing the following URL into your computer browser: http://IP地址:32400/web/

8.15 Install Docker on Debian

Please refer to: How to Install Docker on Debian

8.16 WiFi Connection

8.16.1 Gui

Click on the icon on the top right in the Debian's main window, select your wanted WiFi hotspot and proceed with prompts

8.16.2 Console

Please visit: Use NetworkManager to configure network settings

8.17 Test OpenGL ES

You can test it by clicking on the Terminator icon to start a commandline utility in the System Tools and run the following commands:

glmark2-es2

8.18 HDMI/DP LCD Resolution

Open the system's menu and go to Perferences -> Monitor Settings to customize your settings.
Recommended resolution: 1920x1080@60Hz

8.19 Adjust HDMI overscan

Open the command line terminal and enter the command to operate, Note:
1) You need to login to the desktop;
2) If you are using ssh terminal, please use the same username as the desktop login. The default is pi. You cannot use the root user. you also need to assign the DISPLAY variable:

export DISPLAY=:0.0

8.19.1 Query which resolutions the display supports

xrandr -q

8.19.2 Set resolution

For example set to 1920X1080@60Hz:

xrandr --output HDMI-1 --mode 1920x1080 --refresh 60

8.19.3 Adjust the HDMI overscan

For example, the transformation scaling horizontal coordinates by 0.8, vertical coordinates by 1.04 and moving the screen by 35 pixels right and 19 pixels down:

xrandr --output HDMI-1 --transform 0.80,0,-35,0,1.04,-19,0,0,1

8.19.4 Automatic adjustment at boot

Edit ~/.config/autostart/lxrandr-autostart.desktop,Write the full xrandr command to the key at the beginning of "Exec= as shown below:

[Desktop Entry]
Type=Application
Name=LXRandR autostart
Comment=Start xrandr with settings done in LXRandR
Exec=sh -c 'xrandr --output HDMI-1 --mode 1920x1080 --refresh 50 --transform 1.04,0,-35,0,1.05,-30,0,0,1'
OnlyShowIn=LXDE

8.20 Chromium web browser

8.20.1 GPU

Chromium web browser has enabled hardware acceleration by default, supports WebGL, and can view hardware acceleration details by entering the URL chrome://gpu, as shown below:

8.20.2 VPU

Play a video in the browser, then use fuser on the command line to view the mpp device node to confirm that the vpu interface is being called:

pi@FriendlyElec:~$ fuser /dev/mpp_service
/dev/mpp_service:     3258

If there is no content output from the fuser command, it means software decoding.

9 Work with Debian10 Desktop

10 Work with FriendlyCore

10.1 FriendlyCore User Account

  • Non-root User:
   User Name: pi
   Password: pi
  • Root:
   User Name: root
   Password: fa

10.2 Update Software Packages

$ sudo apt-get update

10.3 Setup Network Configurations

10.3.1 Set static IP address

By default "eth0" is assigned an IP address obtained via dhcp. If you want to change the setting you need to change the following file:

vi /etc/network/interfaces.d/eth0

For example if you want to assign a static IP to it you can run the following commands:

auto eth0
iface eth0 inet static
    address 192.168.1.231
    netmask 255.255.255.0
    gateway 192.168.1.1

The other ethernet port are set up with static IP addresses, as follows:
eth1: 192.168.2.1

10.3.2 Set a DNS

You also need to modify the following file to add the DNS configuration:

vi /etc/systemd/resolved.conf

For example, set to 192.168.1.1:

[Resolve]
DNS=192.168.1.1

Restart the systemd-resolved service with the following command:

sudo systemctl restart systemd-resolved.service
sudo systemctl enable systemd-resolved.service

10.3.3 Set up to use another network interface

To change the setting of "eth1" you can add a new file similar to eth0's configuration file under the /etc/network/interfaces.d/ directory.

10.4 Setup Wi-Fi

First, use the following command to check if Network-Manager is installed on your system:

which nmcli

If you have installed it, refer to this link to connect to WiFi: Use NetworkManager to configure network settings, If you do not have Network-Manager installed on your system, please refer to the following method to configure WiFi,
By default the WiFi device is "wlan0". You need to create a configuration file under "/etc/network/interfaces.d/" for WiFi:

vi /etc/network/interfaces.d/wlan0

Here is a sample wlan0 file:

auto lo
iface lo inet loopback
auto wlan0
iface wlan0 inet dhcp
wpa-driver wext
wpa-ssid YourWiFiESSID
wpa-ap-scan 1
wpa-proto RSN
wpa-pairwise CCMP
wpa-group CCMP
wpa-key-mgmt WPA-PSK
wpa-psk YourWiFiPassword

Please replace "YourWiFiESSID" and "YourWiFiPassword" with your WiFiESSID and password. After save and close the file you can connect to your WiFi source by running the following command:

sudo systemctl daemon-reload
sudo systemctl restart networking

After you power on your board it will automatically connect to your WiFi source.
Please note that if you use one TF card to boot multiple boards the WiFi device name will likely be named to "wlan1", "wlan2" and etc. You can reset it to "wlan0" by deleting the contents of the following file and reboot your board: /etc/udev/rules.d/70-persistent-net.rules

10.4.1 WiFi models supported

10.4.1.1 M.2 WiFi Module
  • RTL8822CE
10.4.1.2 Usb Dongle
  • RTL8821CU (Vid: 0BDA, Pid: C811) (Test sample:TP-Link TL-WDN5200H)
  • RTL8812AU (Vid: 0BDA, Pid: 8812)
  • MediaTek MT7662 (Vid: 0E8D, Pid: 7612) (Test sample:COMFAST CF-WU782AC V2)

10.5 Install the kernel-header package

sudo dpkg -i /opt/linux-headers-*.deb

10.6 Config status LEDs

First determine whether the system already exists the leds initialization service:

sudo systemctl status leds

If the leds service already exists, change the default behavior of the LEDs by editing the following file:

/etc/init.d/leds.sh

Since there is no leds service in the early firmware, you need to refer to the following guide to manually configure the LEDs. First, set the following kernel modules to be automatically loaded at boot:

modprobe ledtrig-netdev
echo ledtrig-netdev > /etc/modules-load.d/ledtrig-netdev.conf

Put the following into the autorun script to associate the status leds with the ethernet interface, and you can configure it to behave in other ways by referring to these content:

echo netdev > /sys/class/leds/usr_led/trigger
echo eth0 > /sys/class/leds/usr_led/device_name
echo 1 > /sys/class/leds/usr_led/link

11 How to Compile

11.1 Setup Development Environment

11.1.1 Method 1: Using docker to cross-compile

Please refre to docker-cross-compiler-novnc

11.1.2 Method 2: Setup build environment on the host machine

11.1.2.1 Install required packages

Install and run requirements ubuntu 20.04, install required packages using the following commands:

sudo apt-get -y update
sudo apt-get install -y sudo curl
sudo bash -c \
  "$(curl -fsSL https://raw.githubusercontent.com/friendlyarm/build-env-on-ubuntu-bionic/master/install.sh)"

The following cross-compilers will be installed:

VersionArchitectureCompiler pathPurpose
4.9.3armhf/opt/FriendlyARM/toolchain/4.9.3Can be used to build 32-bit ARM applications
6.4aarch64/opt/FriendlyARM/toolchain/6.4-aarch64Can be used to build kernel 4.4
11.3aarch64/opt/FriendlyARM/toolchain/11.3-aarch64Can be used to build kernel 4.19 or higher and U-Boot
11.1.2.2 Setting the compiler path

Based on the table in the previous section, select the appropriate version of the compiler and add the compiler's path to PATH. For example, if you want to use the 11.3 cross-compiler, edit ~/.bashrc using vi and add the following content to the end:

export PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin:$PATH
export GCC_COLORS=auto

Run the ~/.bashrc script to make it effective in the current commandline. Note: there is a space after ".":

. ~/.bashrc

To verify if the installation was successful:

$ aarch64-linux-gcc -v
Using built-in specs.
COLLECT_GCC=aarch64-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/11.3-aarch64/libexec/gcc/aarch64-cortexa53-linux-gnu/11.3.0/lto-wrapper
Target: aarch64-cortexa53-linux-gnu
Configured with: /home/cross/arm64/src/gcc/configure --build=x86_64-build_pc-linux-gnu --host=x86_64-build_pc-linux-gnu --target=aarch64-cortexa53-linux-gnu --prefix=/opt/FriendlyARM/toolchain/11.3-aarch64 --exec_prefix=/opt/FriendlyARM/toolchain/11.3-aarch64 --with-sysroot=/opt/FriendlyARM/toolchain/11.3-aarch64/aarch64-cortexa53-linux-gnu/sysroot --enable-languages=c,c++ --enable-fix-cortex-a53-843419 --with-arch=armv8-a+crypto+crc --with-cpu=cortex-a53 --with-pkgversion=ctng-1.25.0-119g-FA --with-bugurl=http://www.friendlyelec.com/ --enable-objc-gc --enable-__cxa_atexit --disable-libmudflap --disable-libgomp --disable-libssp --disable-libquadmath --disable-libquadmath-support --disable-libsanitizer --disable-libmpx --with-gmp=/home/cross/arm64/buildtools --with-mpfr=/home/cross/arm64/buildtools --with-mpc=/home/cross/arm64/buildtools --with-isl=/home/cross/arm64/buildtools --enable-lto --enable-threads=posix --disable-libstdcxx-pch --enable-clocale=gnu --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-indirect-function --enable-gnu-unique-object --enable-default-pie --enable-linker-build-id --with-linker-hash-style=gnu --enable-plugin --enable-gold --with-libintl-prefix=/home/cross/arm64/buildtools --disable-multilib --with-local-prefix=/opt/FriendlyARM/toolchain/11.3-aarch64/aarch64-cortexa53-linux-gnu/sysroot --enable-long-long --enable-checking=release --enable-link-serialization=2
Thread model: posix
Supported LTO compression algorithms: zlib
gcc version 11.3.0 (ctng-1.25.0-119g-FA)

11.2 Build Openwrt/Friendlywrt

11.2.1 Download Code

Two versions are available, please choose as required:

11.2.1.1 FriendlyWrt 21.02
mkdir friendlywrt21-rk3588
cd friendlywrt21-rk3588
git clone https://github.com/friendlyarm/repo --depth 1 tools
tools/repo init -u https://github.com/friendlyarm/friendlywrt_manifests -b master-v21.02 \
        -m rk3588.xml --repo-url=https://github.com/friendlyarm/repo  --no-clone-bundle
tools/repo sync -c  --no-clone-bundle
11.2.1.2 FriendlyWrt 22.03.2
mkdir friendlywrt22-rk3588
cd friendlywrt22-rk3588
git clone https://github.com/friendlyarm/repo --depth 1 tools
tools/repo init -u https://github.com/friendlyarm/friendlywrt_manifests -b master-v22.03 \
        -m rk3588.xml --repo-url=https://github.com/friendlyarm/repo  --no-clone-bundle
tools/repo sync -c  --no-clone-bundle

11.2.2 First compilation step

./build.sh rk3588.mk  # or rk3588-docker.mk

All the components (including u-boot, kernel, and friendlywrt) are compiled and the sd card image will be generated, then execute the following command to generate the image file for installing the system into the emmc:

./build.sh emmc-img

After making changes to the project, the sd card image needs to be repackaged by running the following command:

./build.sh sd-img

11.2.3 Secondary compilation steps

cd friendlywrt
make menuconfig
rm -rf ./tmp
make -j${nproc}
cd ../
./build.sh sd-img
./build.sh emmc-img

11.2.4 Build u-boot only

./build.sh uboot

11.2.5 Build kernel only

./build.sh kernel

11.2.6 Build friendlywrt only

./build.sh friendlywrt

Or go to the friendlywrt directory and follow the standard openwrt commands. If you get an error with the above command, try using the following command to compile in a single thread:

cd friendlywrt
make -j1 V=s

11.3 Build Other Linux

11.3.1 Kernel and u-boot versions

Operating SystemKernel VersionU-boot versionCross-compilerPartition typePackaging ToolKernel branchKernel configurationU-boot branchU-boot configuration
buildrootlinux v5.10.yu-boot
v2017.09
11.3-aarch64

GPT

sd-fuse

nanopi5-v5.10.y_opt

nanopi6_linux_defconfig

nanopi6-v2017.09

rk3588_defconfig
ubuntu-jammy-desktop-arm64
ubuntu-jammy-minimal-arm64
friendlycore-focal-arm64
debian-bullseye-core-arm64
debian-bullseye-desktop-arm64
debian-bullseye-minimal-arm64
debian-buster-desktop-arm64
friendlywrt21nanopi6_linux_defconfig
friendlywrt.config
friendlywrt21-docker
friendlywrt22
friendlywrt22-docker

11.3.2 Build kernel linux-v5.10.y

Clone the repository to your local drive then build:

git clone https://github.com/friendlyarm/kernel-rockchip --single-branch --depth 1 -b nanopi5-v5.10.y_opt kernel-rockchip
cd kernel-rockchip
export PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin/:$PATH
touch .scmversion
# Configuring the Kernel
# Load default configuration
make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 nanopi6_linux_defconfig
# Optionally, load configuration for FriendlyWrt
# make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 nanopi6_linux_defconfig friendlywrt.config
# Optionally, if you want to change the default kernel config
# make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 menuconfig
# Start building kernel
make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 nanopi6-images -j$(nproc)
# Start building kernel modules
mkdir -p out-modules && rm -rf out-modules/*
make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 INSTALL_MOD_PATH="$PWD/out-modules" modules -j$(nproc)
make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 INSTALL_MOD_PATH="$PWD/out-modules" modules_install
KERNEL_VER=$(make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 kernelrelease)
[ ! -f "$PWD/out-modules/lib/modules/${KERNEL_VER}/modules.dep" ] && depmod -b $PWD/out-modules -E Module.symvers -F System.map -w ${KERNEL_VER}
(cd $PWD/out-modules && find . -name \*.ko | xargs aarch64-linux-strip --strip-unneeded)

The generated files:

kernel.imgresource.imgboot.img This img is deprecatedThe kernel modules are located in the out-modules directory

Run your build:
Please refre to #Running the build

11.3.3 Build u-boot v2017.09

Clone the repository to your local drive then build:

git clone https://github.com/friendlyarm/rkbin --single-branch --depth 1 -b nanopi6
git clone https://github.com/friendlyarm/uboot-rockchip --single-branch --depth 1 -b nanopi6-v2017.09
export PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin/:$PATH
cd uboot-rockchip/
./make.sh nanopi6

After the compilation, the following files will be generated:

uboot.imgrk3588_spl_loader_v1.08.111.bin (aka MiniLoaderAll.bin)

Run your build:
Please refre to #Running the build

11.3.4 Running the build

11.3.4.1 Install to target board

RK3588 uses GPT partitions by default, you can use the dd command, but be careful to choose the right output device:

  • The SD/TF Card device node: /dev/mmcblk0
  • The eMMC device node: /dev/mmcblk2


Use the 'parted' command to view the partition layout:

parted /dev/mmcblk2 print

Sample outputs:

Model: MMC A3A551 (sd/mmc)
Disk /dev/mmcblk2: 31.0GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
 
Number  Start   End     Size    File system  Name      Flags
 1      8389kB  12.6MB  4194kB               uboot
 2      12.6MB  16.8MB  4194kB               misc
 3      16.8MB  21.0MB  4194kB               dtbo
 4      21.0MB  37.7MB  16.8MB               resource
 5      37.7MB  79.7MB  41.9MB               kernel
 6      79.7MB  113MB   33.6MB               boot
 7      113MB   147MB   33.6MB               recovery
 8      147MB   31.0GB  30.9GB  ext4         rootfs

as shown above, the resource partition is located at 4 and the kernel partition is located at 5. Use the dd command to write the resource.img and kernel.img files to these partitions, the commands are as follows:

dd if=resource.img of=/dev/mmcblk2p4 bs=1M
dd if=kernel.img of=/dev/mmcblk2p5 bs=1M

If you want to update u-boot:

dd if=boot.img of=/dev/mmcblk2p1 bs=1M

To update new driver modules, copy the newly compiled driver modules to the appropriate directory under /lib/modules.

11.3.4.2 Packaging and creating an SD image

To create a new OS image file, you need to use the "sd-fuse" packaging tool.

"sd-fuse" is a collection of scripts that can be used to create bootable SD card images for FriendlyElec boards. Its main features include:

  • Creation of root filesystem images from a directory
  • Building of bootable SD card images
  • Simple compilation of kernel, U-Boot, and third-party drivers

Please click on the following link to find out more:

Kernel versionPackaging Tool
linux v5.10.y

sd-fuse_rk3588

11.3.4.3 USB flashing
11.3.4.3.1 Linux

To flash U-Boot and kernel using the "upgrade_tool" tool, please use the following command:

sudo upgrade_tool ul MiniLoaderAll.bin
sudo upgrade_tool di -p parameter.txt
sudo upgrade_tool di uboot uboot.img
sudo upgrade_tool di resource resource.img
sudo upgrade_tool di kernel kernel.img
sudo upgrade_tool RD

Note: "upgrade_tool" is a command-line tool provided by Rockchip for Linux operating systems (Linux_Upgrade_Tool).

11.4 Build the code using scripts

11.4.1 Download scripts and image files

git clone https://github.com/friendlyarm/sd-fuse_rk3588.git --single-branch -b master
cd sd-fuse_rk3588
tar xvzf /path/to/netdrive/03_Partition\ image\ files/friendlycore-focal-arm64-images.tgz

11.4.2 Compile the kernel

Download the kernel source code and compile it. the relevant image files in the friendlycore-focal-arm64 directory will be automatically updated, including the kernel modules in the file system:

git clone https://github.com/friendlyarm/kernel-rockchip --depth 1 -b nanopi5-v5.10.y_opt kernel-rk3588
KERNEL_SRC=$PWD/kernel-rk3588 ./build-kernel.sh friendlycore-focal-arm64

11.4.3 Compile the kernel headers

git clone https://github.com/friendlyarm/kernel-rockchip --depth 1 -b nanopi5-v5.10.y_opt kernel-rk3588
MK_HEADERS_DEB=1 BUILD_THIRD_PARTY_DRIVER=0 KERNEL_SRC=$PWD/kernel-rk3588 ./build-kernel.sh friendlycore-focal-arm64

11.4.4 Compile the uboot

Download the uboot source code and compile it. the relevant image files in the friendlycore-focal-arm64 directory will be automatically updated:

git clone https://github.com/friendlyarm/uboot-rockchip --depth 1 -b nanopi6-v2017.09
UBOOT_SRC=$PWD/uboot-rockchip ./build-uboot.sh friendlycore-focal-arm64

11.4.5 Generate new image

Repackage the image file in the friendlycore-focal-arm64 directory into sd card image:

./mk-sd-image.sh friendlycore-focal-arm64

After the command is completed, the image is in the out directory, you can use the dd command to make the SD boot card, for example:

dd if=out/rk3588-sd-friendlycore-focal-5.10-arm64-YYYYMMDD.img of=/dev/sdX bs=1M

11.5 Building AOSP from source

11.5.1 Hardware and Software Requirements

  • Your computer should have at least 16GB of RAM and 300GB of disk space. We recommend using a machine with 32GB of RAM and a large-capacity, high-speed SSD, and we do not recommend using virtual machines.
  • If you encounter compilation errors, they may be caused by problems with the compilation environment. We recommend using the following Docker container for compilation: docker-cross-compiler-novnc.

11.5.2 Download source from the netdrive

Netdisk URL: Click here
File location on netdisk:"07_Source codes/rk35xx-android12-xxxxxxx-YYYYMMDD.tgz" (YYYYMMDD represents the date of the package, and xxxxxxx represents the final commit-id)
Unzip and fetch updates:

tar xzf '/path/to/netdisk/07_Source codes/rk35xx-android12-xxxxxxx-YYYYMMDD.tgz'
cd rk35xx-android12
git pull

11.5.3 Tablet profile build (First Build)

echo "ROCKCHIP_DEVICE_DIR := device/rockchip/rk3588/nanopi6" > .rockchip_device.mk
# export INSTALL_GAPPS_FOR_TESTING=yes  # include google apps
. setenv.sh
./build.sh -FMu

11.5.4 TV profile build (First Build)

echo "ROCKCHIP_DEVICE_DIR := device/rockchip/rk3588/nanopi6_box" > .rockchip_device.mk
# export INSTALL_GAPPS_FOR_TESTING=yes  # include google apps
. setenv.sh
./build.sh -FMu

11.5.5 Second build

# export INSTALL_GAPPS_FOR_TESTING=yes  # include google apps
. setenv.sh
make

11.5.6 Running your AOSP build

After the Android compilation is completed, the image file will be stored in the rockdev/Image-aosp_nanopi3 subdirectory of the Android source code directory.

11.5.6.1 USB Flashing

Use the rockchip tool to flash the following file: rockdev/Image-aosp_nanopi3/update.img

11.5.6.2 SD-to-eMMC Flashing

Refer to the following steps:
1) Insert the SD card of the eflasher system into the host;
2) Copy the files in the rockdev/Image-aosp_nanopi3 directory to the android12 or androidtv directory in the FRIENDLYARM partition of the SD card:

sudo cp -af parameter.txt config.cfg MiniLoaderAll.bin uboot.img \
    dtbo.img vbmeta.img boot.img recovery.img \
    misc.img pcba_small_misc.img pcba_whole_misc.img \
    baseparameter.img super.img /media/$USER/FriendlyARM/android12

3) Insert the SD card into NanoPC-T6 and re-flash;

11.5.7 Pack the new SD Image

git clone https://github.com/friendlyarm/sd-fuse_rk3588.git
SDFUSE=$PWD/sd-fuse_rk3588
mkdir $SDFUSE/android12
 
cd /path/to/rk35xx-android12/rockdev/Image-aosp_nanopi3
cp -af parameter.txt config.cfg MiniLoaderAll.bin uboot.img \
    dtbo.img vbmeta.img boot.img recovery.img \
    misc.img pcba_small_misc.img pcba_whole_misc.img \
    baseparameter.img super.img $SDFUSE/android12
 
cd $SDFUSE/
./mk-sd-image.sh android12
 
tar xvzf /path/to/netdrive/03_Partition\ image\ files/emmc-flasher-images.tgz
./mk-emmc-image.sh android12

For more information, please refer to #Packaging and creating an SD image

12 Backup rootfs and create custom SD image (to burn your application into other boards)

12.1 Backup rootfs

Run the following commands on your target board. These commands will back up the entire root partition:

sudo passwd root
su root
cd /
tar --warning=no-file-changed -cvpzf /rootfs.tar.gz \
    --exclude=/rootfs.tar.gz --exclude=/var/lib/docker/runtimes \
    --exclude=/etc/firstuser --exclude=/etc/friendlyelec-release \
    --exclude=/usr/local/first_boot_flag --one-file-system /

12.2 Making a bootable SD card from a root filesystem

Run the following script on your Linux PC host, we'll only mention "debian-buster-desktop-arm64 os" for brevity, but you can apply the same process for every linux OS.

su root
git clone https://github.com/friendlyarm/sd-fuse_rk3588 --single-branch -b master
cd sd-fuse_rk3588
tar xvzf /path/to/netdrive/03_Partition\ image\ files/debian-buster-desktop-arm64-images.tgz
tar xvzf /path/to/netdrive/03_Partition\ image\ files/emmc-eflasher-images.tgz
scp pi@BOARDIP:/rootfs.tar.gz /rootfs.tar.gz
mkdir rootfs
tar xzf rootfs.tar.gz -C rootfs
./build-rootfs-img.sh rootfs debian-buster-desktop-arm64
./mk-sd-image.sh debian-buster-desktop-arm64
./mk-emmc-image.sh debian-buster-desktop-arm64 autostart=yes

13 Configuring kernel command line parameters

13.1 eMMC Boot

Here are the steps:
Make an eflahser bootable SD card (use the firmware file starting with rk3xxxx-eflasher-),
Insert the SD card into your computer, go to the SD card's OS-related directory, and edit the file parameter.txt, which is a text file containing command-line parameters,
Then boot from the SD card and burn the system to the eMMC.

13.2 SD Boot

To modify the command line parameters of the SD card, you need to repackage the SD card image file,
you can use the sd-fuse script we provide to assist packaging:


git clone https://github.com/friendlyarm/sd-fuse_rk3588.git -b master --single-branch
cd sd-fuse_rk3588
tar xvzf /path/to/netdrive/03_Partition\ image\ files/friendlywrt22-images.tgz
tar xvzf /path/to/netdrive/03_Partition\ image\ files/emmc-flasher-images.tgz
vim friendlywrt22/parameter.txt   # Edit command-line parameters
./mk-sd-image.sh friendlywrt22    # Repackage sd image file
./mk-emmc-image.sh friendlywrt22  # Repackage sd-to-emmc image file

14 Connect NVME SSD High Speed Hard Disk

14.1 Detection of SSD

root@FriendlyELEC:~# cat /proc/partitions 
major minor  #blocks  name
   1        0       4096 ram0
 259        0  125034840 nvme0n1

If there is a nvme0n1 device node it means an SSD is recognized.

14.2 Partition of SSD

To mount an SSD under Linux we re-partition it as one section by running the following command:

(echo g; echo n; echo p; echo 1; echo ""; echo ""; echo w; echo q) | fdisk /dev/nvme0n1

If you want to re-partition it to multiple sections you can run "fdisk /dev/nvme0n1". For more detail about this command refer to the fdisk's manual.

14.3 Format Section to EXT4

After an SSD is successfully partitioned you can check its sections by running "cat /proc/partitions". The /dev/nvme0n1p1 section is used to store data:

root@FriendlyELEC:~# cat /proc/partitions
major minor  #blocks  name
 
   1        0       4096 ram0
 259        0  125034840 nvme0n1
 259        2  125033816 nvme0n1p1


The following command formats a section to ext4:

mkfs.ext4 /dev/nvme0n1p1

14.4 Auto Mount SSD on System Startup

Before we mount an SSD's section you need to know its Block ID. You can check it by running "blkid":

blkid /dev/nvme0n1p1
/dev/nvme0n1p1: UUID="d15c4bbf-a6c3-486f-8f81-35a8dbd46057" TYPE="ext4" PARTUUID="887628f0-01"

Add a "Block ID" to "/etc/fstab" and here is what it looks like

UUID=<Block ID> /media/nvme ext4 defaults 0 0

You need to replace <Block ID> with the UUID obtained by running "blkid". To mount the SSD in our example we made the "/etc/fstab" file as follows:

UUID=d15c4bbf-a6c3-486f-8f81-35a8dbd46057 /media/nvme ext4 defaults 0 0

We want to mount an SSD to "/media/nvme" but this directory doesn't exist. Therefore we create it and change its access right by running the following commands:

mkdir -p /media/nvme
chmod 777 /media/nvme

Run "mount" to check if the SSD is mounted successfully:

mount /media/nvme

You can reboot your board to check if your SSD will be automatically mounted:

reboot

15 Schematic, PCB CAD File

16 Update Logs

16.1 2023-05-27

16.1.1 Ubuntu22

  • Fix multi-screen display issue (4K+4K+4K or 8K+4K)

16.2 2023-05-26

16.2.1 Ubuntu22

  • Fixed audio issues with DP
  • Fixed 8K display (HDMI TX0 port)
  • Optimized r8125 performance and stability

16.2.2 FriendlyWrt

  • Updated v22.03 to openwrt-22.03.5
  • Updated v21.02 to openwrt-21.02.7
  • Optimized r8125 performance and stability

16.3 2023-05-21

16.3.1 Debian11

  • Update to Rockchip sdk version linux-5.10-gen-rkr4
  • Switch desktop to LXDE

16.4 2023-05-15

16.4.1 FriendlyCore Focal

  • Add Qt 5.10 support

16.5 2023-05-05

16.5.1 Android

  • Add USB bluetooth dongle support (rtl8761bu)
  • Add M.2 RTL8822CE bluetooth support

16.6 2023-04-26

16.6.1 FriendlyWrt:

  • Upgrade v22.03 to openwrt-22.03.4
  • Upgrade v21.02 to openwrt-21.02.6

16.7 2023-02-10

16.7.1 Android update

  • android support direct boot from sd card
  • Fix the problem that in some cases hdmi has no signal output and needs to be plugged in once to recover
  • Support enable adb function through android interface

16.7.2 Added Debian11

There are three versions:

  • Debian11 Core: Command-line only
  • Debian11 Minimal: With Xfce desktop, lite version
  • Debian11 Desktop: With Xfce desktop, full version

16.8 2023-01-09

16.8.1 New OS:

  • Android12: Android 12 Tablet
  • FrienclyCore: Lightweight version of Linux, based on Ubuntu Core 20.04, no desktop system

16.8.2 Android:

  • Add support for USB WiFi module (Model: RTL8822CE/RTL8812AU/MediaTek MT7662)
  • Update SDK to Rockchip android-12.1-mid-rkr12

16.8.3 Ubuntu jammy:

  • optimized the systemd service

16.9 2022-12-13

16.9.1 Ubuntu jammy:

  • Fix WiFi issue

16.10 2022-12-04

16.10.1 FriendlyWrt:

  • Fix the issue that the storage space cannot be expanded
  • Improve stability of the eMMC Tools

16.11 2022-11-17

16.11.1 FriendlyWrt:

  • Fix 1G LAN port not working issue

16.11.2 Ubuntu jammy desktop:

  • Add chromium video hardware decoding support
  • Add hardware cursor support

16.12 2022-10-25

Initial Release